A Comparative Study of Redundant Constraints Identification Methods in Linear Programming Problems

نویسنده

  • Joaquim J. Júdice
چکیده

The objective function and the constraints can be formulated as linear functions of independent variables in most of the real-world optimization problems. Linear Programming LP is the process of optimizing a linear function subject to a finite number of linear equality and inequality constraints. Solving linear programming problems efficiently has always been a fascinating pursuit for computer scientists and mathematicians. The computational complexity of any linear programming problem depends on the number of constraints and variables of the LP problem. Quite often large-scale LP problems may contain many constraints which are redundant or cause infeasibility on account of inefficient formulation or some errors in data input. The presence of redundant constraints does not alter the optimal solutions s . Nevertheless, they may consume extra computational effort. Many researchers have proposed different approaches for identifying the redundant constraints in linear programming problems. This paper compares five of such methods and discusses the efficiency of each method by solving various size LP problems and netlib problems. The algorithms of each method are coded by using a computer programming language C. The computational results are presented and analyzed in this paper.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A revisit of a mathematical model for solving fully fuzzy linear programming problem with trapezoidal fuzzy numbers

In this paper fully fuzzy linear programming (FFLP) problem with both equality and inequality constraints is considered where all the parameters and decision variables are represented by non-negative trapezoidal fuzzy numbers. According to the current approach, the FFLP problem with equality constraints first is converted into a multi–objective linear programming (MOLP) problem with crisp const...

متن کامل

A New Method for Solving the Fully Interval Bilevel Linear Programming Problem with Equal Constraints

Most research on bilevel linear programming problem  is focused on its deterministic form, in which the coefficients and decision variables in the objective functions and constraints are assumed to be crisp. In fact, due to inaccurate information, it is difficult to know exactly values of coefficients that used to construct a bilevel model. The interval set theory is suitable for describing and...

متن کامل

A NOTE ON THE ZIMMERMANN METHOD FOR SOLVING FUZZY LINEAR PROGRAMMING PROBLEMS

There are several methods for solving fuzzy linear programming (FLP)problems. When the constraints and/or the objective function are fuzzy, the methodsproposed by Zimmermann, Verdegay, Chanas and Werners are used more often thanthe others. In the Zimmerman method (ZM) the main objective function cx is addedto the constraints as a fuzzy goal and the corresponding linear programming (LP)problem w...

متن کامل

Some new results on semi fully fuzzy linear programming problems

There are two interesting methods, in the literature, for solving fuzzy linear programming problems in which the elements of coefficient matrix of the constraints are represented by real numbers and rest of the parameters are represented by symmetric trapezoidal fuzzy numbers. The first method, named as fuzzy primal simplex method, assumes an initial primal basic feasible solution is at hand. T...

متن کامل

FUZZY LINEAR PROGRAMMING WITH GRADES OF SATISFACTION IN CONSTRAINTS

We present a new model and a new approach for solving fuzzylinear programming (FLP) problems with various utilities for the satisfactionof the fuzzy constraints. The model, constructed as a multi-objective linearprogramming problem, provides flexibility for the decision maker (DM), andallows for the assignment of distinct weights to the constraints and the objectivefunction. The desired solutio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010